
Flow-Centric Painterly Rendering

Omar Hesham
Carleton University
Ottawa, ON, Canada

ohesham@connect.carleton.ca

David Mould
Carleton University
Ottawa, ON, Canada

mould@scs.carleton.ca

Abstract
We present a painterly rendering technique that emphasizes
smooth line flows to describe important shapes in the
image, as well as contributing in an essential part to the
final stylistic artwork. Our method uses the smoothed edge
tangent flow (ETF) [20] for stroke pathing, and provides an
artist-friendly way to control the general look and feel of
the image using familiar brush stroke properties and colour
theme palettes. We achieve a highly stylized
expressionistic look that can be applied to still photographs
and portraits.

Key words: non-photorealistic rendering, edge flow
filtering, painterly rendering.

1. Introduction

Developing painterly rendering techniques that imitate or
expand on traditional art styles, has been at the heart of
non-photorealistic rendering (NPR) and a driving factor in
its popularity. A common source of inspiration comes from
impressionistic art, for its pleasant visual dynamics and
abstraction qualities that make it suitable for NPR research.

Traditionally, edge flows have been used to guide those
painterly algorithms. Many consider flow-like structures to
be pleasant, harmonic, or at least interesting [11]. Those
lines, however, tend to remain behind-the-scenes for the
currently available methods, and their appearance is usually
subtle, if not unintended, at best. This is again motivated by
the impressionistic art style which doesn’t announce those
lines very often. This motivated us to develop an automated

algorithm for stylistic paintings where smooth contour lines
are a prominent feature in the artwork. Thus, those edge
flows become as much part of the art, as they are
computational guides for the brush strokes. Our goal in this
paper is to produce a wide variety of painterly renderings,
similar in spirit to expressionistic art, like van Gogh’s
work, but not limited to his style. The user should be able
to comfortably choose any variation between van Gogh’s
short and visually arresting strokes, and Edvard Munch's
soothing yet tempestuous long sweeps. The variation
extends to the way color varies across neighboring strokes,
be it subtle or announced.

One of the challenges that come with our goal of artistic
flexibility is stroke length management. A painting’s
canvas is a limited 2-dimensional space, and giving free
range to the length of the strokes to be long and prominent,
should also be balanced with a control method, so that the
strokes don’t end up in unwelcomed regions. Quite often,
these control methods result in shortening of those strokes,
effectively canceling the flexibility we were aiming for.

Another challenge is determining a user-friendly way to
manage the colour variation in the painting, without
necessarily forcing a procedural rule. This invited a study
of how expressionistic artist used colour, just to realize that
there is in fact no common theme, except uncommonness.

This allows us to break the painting challenge into three
specific parts: i) Brush stroke path, ii) Brush properties, and
iii) Brush coloring. Our method relies on finding a smooth
edge flow, and allowing the brush stroke to flow freely

(a) (b) (c) (d)

Figure 1. Our method applied to (a) an input image, with (b) & (c) different brush sizes, and (d) using a harmonic color theme.

along its path, then relying on harmonic colour themes for
the final render.

 (a) (b) (c)

Figure 2. Artwork by (a) Vincent van Gogh, (b) Edvard
Munch and (c) Gwenn Seemel, illustrating the stylistic impact
of flow lines; which inspired our work.

The rest of this paper is organized as follows: In Section 2,
we review the existing painterly rendering methods and
briefly compare their results to our goals. In Section 3, we
detail our method for flow-based painting, and discuss the
results in Section 4. In conclusion, Section 5 reflects on the
development of this project and discusses our future goals
and research direction.

2. Related Work

There are several categories of techniques in the NPR
literature to achieve a stylistic painterly effect. There is the
stroke-based rendering (SBR), which started with Haeberli
[28], and has gone through improvements ever since, the
most prominent of which are the introduction of image
gradient to control stroke lengths and using optical flow to
achieve inter-frame coherence, which were presented in [1]
and later improved by [4]. In addition, Hertzmann [25]
introduced a layered approach to simulate how an artist
would paint a broad sense of the picture first, and then add
in the details at a finer level. The reader is referred to
Shwartz [8] for a historic account of the development of
SBR methods. In general, SBR techniques have focused on
improving the realistic look of the paint strokes, and
faithfully reproducing the input image’s hues and tone.

Olsen[3], also inspired by the works of van Gogh, proposed
a fluid-dynamics system which allows the user to place
vortices around the image. It then traces particles as they
get advected in their container. The results were pleasant
with long turbulent strokes. However, color-space
segmentation was required in order to prevent the fluids
from different colored regions from mixing.

Recent work in texture transfer in [2] has also been
successful in producing an expressionistic look, but their
technique was more suitable for hatching and pen
illustrations, than their image vector flow results, as they
looked as if the flow visualization was simply pasted on top
of the original image, and was not very painterly.

Particle based diffusion methods have been central to
vector field visualization, using methods like line-integral
convolution (LIC) [18][19], which have found their way
into image processing in hopes of achieving a smooth
painterly look [11][10]. Image pixels, as particles, are
diffused along a smoothed tensor field representing the
image edge flow. The results are visually appealing and
smooth, but they look more like blurred images and washed
regions than a painting made by an artist’s strokes.

The method we propose, is an SBR renderer that is capable
of turning images into highly stylized expressionistic
paintings, and doesn’t restrict the stroke style or color to
the original input image. It is also compatible with the
aforementioned SBR techniques, allowing it to mimic their
impressionistic painting results if desired.

3. Method

Our method first generates a smooth vector field from the
input image, traces the brush stroke paths along those
vectors according to user-selected painting variables
(brush size, stroke length, opacity, etc.); and finally
consults the colour theme palette before painting each
stroke’s final output. The major steps are detailed in this
section and a sketch of the method is seen in Figure [4].

3.1 General Image Flow

To determine lines suitable for the brush strokes, we
intuitively need a vector field that considers the silhouettes
of objects and takes into account image topology. Previous
SBR methods have relied on the vectors orthogonal to the
image gradient field, which were later smoothed using
bilinear filtering [1][4][3]. While they provided satisfactory
stroke guidance, the fields suffered from poor temporal
coherence, as the authors point out, and required the
development of elaborate and memory-consuming
techniques to achieve temporal coherence and smooth
videos. We elected to go with the edge tangent flow (ETF)
smoothing method proposed by Kang[20] which uses
bilateral filtering on the image gradient vector field to
produce a noise-free and smooth field that preserves sharp
edges and can be extended to 3D filtering [9], producing
temporally coherent flow fields. We don’t attempt to tackle
video in this paper; however, it is always good to have a
solid base for future development.

Figure 3. Edge Tangent Flow (ETF)

Figure 4. Method overview.

3.2 Brush Strokes

The first step in this section involves brush stroke
placement. It would be ideal to come up with an energy
minimization scheme to assess the best stroke placement.
This is not easy, however, due to the complex and
seemingly random nature of the expressionistic style we’re
going for. The next step involves tracing a brush stroke
path along the vector field lines. Such sophisticated
methods to approach these problems can be seen in
Hertzmann[25] using cubic splines, and Salisbury [14]
using differential equations to find the smooth curve. LIC
methods have seen recent popularity in tracing strokes in
images[10][11] and video[6][9], but they are
computationally expensive, essentially image processing
methods that diffuse the image along those lines rather than
painting strokes. This makes it challenging to extend them
to textured strokes, for example.

Any of the above methods would work with our system,
albeit for tracing only not painting. We empirically found,
however, that they are not needed to achieve a great
painterly result. Our current implementation is a major
simplification of the previous techniques, yet the results are
more than satisfactory. For stroke placement, we distribute
the stroke points randomly, and to trace a path, we simply
travel in the direction of the closest vector by an amount
equal to the radius of the brush. This seems to work
primarily because of the smoothness of the ETF field,
especially at the local level, where usually a brush would
want to sample a local area of vectors to decide where to go
next, but the smoothed ETF, in a sense, already made that
decision and stored it in the one pixel underneath it.

Every stroke stores the following properties:
 Stroke Path – a set of control points describing the

stroke path.
 Stroke Radius – defines the brush footprint size, and

the stroke path tracing increment.
 Stroke Length – at least as long as the stroke radius.

The length is usually set in the 100s.
 Stroke Colour – see Section 3.3

If a user wanted to control the amount of stroke “spill-
over” between regions, we implemented a version of
Litwinocz’s[1] control method, where the brush stroke path
would be interrupted if it is perceived to have crossed a
boundary. We do this by making sure that the Euclidean
distance in the perceptually uniform CIELab color space,
between the center of the stroke path so far and the current
candidate path point, to be less than a certain amount,
controlled by the user. If that’s not the case, the pathing is
interrupted and stored as it is at that stage. In our
implementation, we call this global parameter the edge
protection value.

3.3 Color Themes

The final element of our method deals with delivering a
vibrantly colored painting, with a naturally random look,
and coherent hues. Before the brush gets painted in the
previous step, it sends out the 2D image location of the
center point along its current path, to our color theme
manager. The manager then samples the colour from the
bilaterally filtered image and then processes this input color
according to user-chosen rules and returns the new color
which is then used to render the stroke. Note that this is not

Input Image

ETF Generate Stroke Paths

Image Abstraction
(Bilateral Filtering)

Colour Theme
Manager

Stroke
position

Hue

Path
Painter

Final Painting

a post-process, but an active element of every brush
stroke’s rendering.

By default, we use the bilaterally filtered image instead of
the source image as input to the colour manager, because it
eliminates input noise which can produce unwanted stroke
variation. For example, bumps on the skin usually appear
with shadow noise and variations that could, at the pixel
level, result in dramatic stroke color shifts, which is
undesirable if the user hasn’t asked for it. Such variations
in our paintings should originate from the user specified
color theme settings. We prefer the bilateral filter over the
Guassian blur, for its ability to smooth out those details
while maintaining important edges. The user can specify
not to use the bilateral filter at all, if that’s to their liking.

We introduce the notion of a “colour theme” for fast artistic
manipulation, which allows the user to easily change the
general look and feel of the output painting. In the current
implementation, a theme is stored as a cyclic image file
whose height represents the input color’s hue in the HSV
space, and the width contains all the possible hues for the
theme manager to randomly choose from. In addition, we
perform a luminance perturbation step, which introduces
the randomized variance amongst strokes, usually seen in
expressionistic paintings. Instead of uniformly randomly
varying the luminance however, we use the inverse logistic
cumulative distribution function, the logit [Figure 5]. It is,
in our experience, better than the probit function (inverse
Gaussian), as it has heavier tails, allowing it to maintains
focus on the mean, while still affording a healthy amount
of extreme values to appear. The probit is also difficult to
compute and is usually approximated, while the logit
function is efficiently computed as:

logitሺܙሻ ൌ logሺܙሻ െ log ሺ1 െ ሻܙ

, where q is a uniformly random number ∈ ሾ0,1ሿ. The user
specifies the amount of luminance variance and we use that
to obtain the final luminance. An example computation is:

 ൌ randomሾ0,1ሿ
ߪ ൌ ݒ√
′ߤ ൌ ߤ ሻlogitሺ ߪ

where is a uniformly random number, ݒ is the user-input
value for variance, usually ∈ ሾ8, 30ሿ, ߤ is the input CIELab
luminance value, and ߤ′ is the outcome luminance, which is
now a random value with the desired logistic probability
distribution of variance ݒ and mean ߤ.

Figure 5. Color theme and stroke hue/luminance management.

In order to achieve a pleasant result, we consult the aid of
colour harmonies [29] to define a few color themes around
the hue spectrum of the HSV space, dictating how each
color should be processed. Our implementation comes with
a handful of predefined color harmonies, including Type i,
Type V, Type L and hue opponency.

We also allow adventurous users to extend the colour
theme sampling process to the entire HSV colour
definition, instead of just the hue. This means that an artist
could specify exactly the set of colours to be used for a
given input hue, no matter what that input hue’s brightness
and saturation were. Examples of this creative flexibility
can be seen in [Figure 6].

3.4 Stroke Rendering

For the bottom most layer, the user can choose between
black, white, and the bilaterally filtered image as a starting
canvas. The color theme manager returns a single RGB
colour to the brush stroke that invoked it, and that colour is
used to paint the entire stroke, by drawing straight lines
between every point along a stroke’s path. We do not tackle
bump mapping and other canvas enhancement methods as
we view them as post-processing elements that are out of
the scope this project. We decided to keep it constrained to
single colored solid strokes to showcase that sophisticated
textures are not always necessary, and to bring attention to
the underlying methodology, instead of nifty after-effects.

4. Discussion

The gallery [Figures 10-13] showcases a range of painterly
renderings obtained through our system. The performance
is reasonably fast, with the main bottleneck being the
image and ETF bilateral filtering steps, taking up to 2
minutes with very high parameter values and number of
iterations. Once past the filering stage, our painter is very
fast, accommodating anything between 500 and 100000
strokes, while only taking around 5 seconds to paint at
extreme values. This is partly attributed to the simplistic
tracing method we used (just straight lines), and the method
would probably become slower if something more
expensive like stroke splines were calculated. A GPU
implementation, however, would eliminate these problems
as the painter is trivially parallelizable by nature.

At the moment, all parameters are defined globally, making
it difficult to correct problem areas like the eyes, without
requiring some user input, like weight maps or spatial
interaction. Increasing the edge protection parameter fixes
the issue with the eyes, but at the cost of what might have
been a pleasant interplay of strokes in the background. In
addition, setting a very high edge protection value might
prevent a large portion of the image from being painted at
all, because the strokes keep getting interrupted early on.
Although not always necessary, using the bilateral image as
the startup canvas can afford the use of high edge
protection values [Figure 7] without losing the painterly
look. These observations call for examining better
localization of parameters using mostly automated and
optionally user-interactive methods.

 Input

Figure 6. All HSV channels being processed by the theme.
Paintings shown with the color theme that produced them.

Figure 7. From left to right: Edge Protection = 8; Edge
Protection = 95 with black canvas; Edge Protection = 95 with
bilateral image as canvas.

Figure 8. Our painter is not limited to thin long strokes. We can
use short broad strokes and still achieve the expressionistic look
we’re after, and our stylistic edge flow prominence remains intact

5. Conclusion

Through our implementation, we have met our goal of
producing an automated algorithm that leverages Kang's
ETF to achieve a flow-centric painterly effect, with user
input to control artistic preferences like brush properties
and color theme, and we feel enthusiastic moving forward.

In this section, I go over a few of the possible directions
this project can benefit from:

Tensor Fields – On the whole, the ETF vector field has
exceeded my expectations, especially given my crude
stroke tracing method. However, tensor fields can be very
suitable for localization work, by sampling various readily
accessible properties about the field like curvature and
eigen values [16][17]. An investigation into how these
properties can be utilized in our algorithm is needed, but

similar previous applications like the highly coherent video
abstraction in Kang[23] and the beautifully illustrated
pattern wrapping on 3D surfaces by Li[7], look very
promising already. In addition, manipulating singularities
and other features in these tensor fields produces
interesting user-interaction possibilities [2010].

Extension to video – to achieve temporal coherency, 2D
SBR methods have mainly relied on storing strokes in
memory between frames, and performing optical-flow
calculation or other similar metrics to move and distort
their strokes[1][3][4]. Another recently published technique
is particle flow in a 3D ETF field[9], requiring no optical
flow calculation, and no intermediate stroke storage
required, however the results don’t look very painterly but
rather like blurred images (similar to my discussion in
Section 2 of LIC diffusion methods). Our current method is
extensible using both approaches and I’d like to investigate
a happy medium, hoping for an online greedy method that
gives the video the same rich painted look we have right
now with images, but without the optical-flow storage
overhead, and maybe also allow animated strokes (think
light-cycles on a Tron suit).

Richer Strokes – I’m happy with this initial development
of the colour theme manager and the way it easily
transforms the image. On the other hand, if we wanted to
arrive at something rich and colorful like Semeel's in
[Figure 2(c)] and other similarly sophisticated paintings,
we propose an adjustment to the brush painting model.
First, a layered approach would be great, adapting
Hertzmann’s curved strokes, taking into consideration the
edge flow topology. Second, allowing for and randomizing
the stroke texture. Third, exploring a more painter friendly
color-spaces, like Red-Yellow-Blue (RYB) space, as
suggested by Schwartz[8].

Initial Stroke Placement – random placement worked
great in our implementation, but that limits our ability to
parameterize it. For example, we would like to spread the
strokes uniformly along the field lines, and be able to
control the spacing and randomness of the placement. This
can be achieved using the techniques described by
Hansen[27] and Jobard[30].

Figure 9. The strokes in this detail of a van Gogh illustrate
the concept of uniform distribution along and amongst the
vector stream lines.

These changes are not aimed at replacing human artists, but
rather providing a practical implementation that leverages
computational power, in order to empower their creative
process and allow them to efficiently apply it to, say, video
or 3D surfaces.

Acknowledgements

For personal academic use only. I have not yet obtained
permissions for some of the images present here.
Please do not distribute, submit or share this document
publicly.

References

[1] Peter Litwinowicz. 1997. Processing images and video

for an impressionist effect. (SIGGRAPH '97).
[2] Hochang Lee, Sanghyun Seo, and Kyunghyun Yoon.

Directional texture transfer with edge enhancement.
(NPAR '10)

[3] Sven C. Olsen, Bruce A. Maxwell, and Bruce Gooch.
2005. Interactive vector fields for painterly rendering.
In Proceedings of Graphics Interface 2005 (GI '05).

[4] James Hays and Irfan Essa. 2004. Image and video
based painterly animation. In Proceedings of the 3rd
international symposium on Non-photorealistic
animation and rendering (NPAR '04), Stephen N.
Spencer (Ed.).

[5] Barbara J. Meier. 1996. Painterly rendering for
animation. In Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques (SIGGRAPH '96).

[6] Huang, H., Zhang, L. and Fu, T.-N. (2010), Video
Painting via Motion Layer Manipulation. Computer
Graphics Forum, 29: 2055–2064.

[7] Yuanyuan Li, Fan Bao, Eugene Zhang, Yoshihiro
Kobayashi, and Peter Wonka. 2011. Geometry
Synthesis on Surfaces Using Field-Guided Shape
Grammars. IEEE Transactions on Visualization and
Computer Graphics 17, 2 (February 2011)

[8] Martin Schwarz, Tobias Isenberg, Katherine Mason,
and Sheelagh Carpendale. 2007. Modeling with
rendering primitives: an interactive non-photorealistic
canvas. (NPAR '07).

[9] Yoon, J.; Lee, I.; Kang, H.; , "Video Painting Based on
a Stabilized Time-Varying Flow Field," Visualization
and Computer Graphics,

[10] Holger Winnemöller. Oilpaint Effect in Pixel Bender
Plugin for Photoshop CS5. Adobe Systems.2010

[11] Joachim Weickert, Coherence-enhancing diffusion of
colour images, Image and Vision Computing, Volume
17, Issues 3-4, March 1999, Pages 201-212.

[12] Jonathan Palacios and Eugene Zhang. 2007. Rotational
symmetry field design on surfaces. ACM Trans.
Graph. 26, 3, Article 55 (July 2007)

[13] Palacios J, Zhang E. Interactive Visualization of
 Rotational Symmetry Fields on Surfaces. IEEE Trans

VisComput Graph. 2010 Sep 10.

Figure 10. First three: our method with decreasing luminance variance and increasing edge protection;
Last image: Adobe Photoshop CS5 OilPaint filter[10].

Figure 11. [Left] The same degree of edge
protection works for different brush sizes
and varying levels of detail.

Figure 12. [Right] Even when furry details get
lost through bilateral filtering, our color
theme variation can bring them back in a
harmonic way.

[14] Michael P. Salisbury, Michael T. Wong, John F.
Hughes, and David H. Salesin. 1997. Orientable
textures for image-based pen-and-ink illustration.
(SIGGRAPH '97).

[15] Lee, Jaewook. Volume painting: incorporating
volumetric rendering with line integral convolution
(LIC). Texas A&M Theses and Dissertations
Collection.

[16] Eugene Zhang, James Hays, and Greg Turk. 2007.
Interactive Tensor Field Design and Visualization on
Surfaces. IEEE Transactions on Visualization and
Computer Graphics 13, 1 (January 2007)

[17] Eugene Zhang, Harry Yeh, Zhongzang Lin, and
Robert S. Laramee. 2009. Asymmetric Tensor
Analysis for Flow Visualization. IEEE Transactions
on Visualization and Computer Graphics 15, 1
(January 2009),

[18] Brian Cabral and Leith Casey Leedom. 1993. Imaging
vector fields using line integral convolution. In
Proceedings of the 20th annual conference on
Computer graphics and interactive techniques
(SIGGRAPH '93).

[19] Detlev Stalling and Hans-Christian Hege, "Fast and
Resolution Independent Line Integral Convolution,"
Proceedings of ACM SIGGRAPH 95.

[20] Henry Kang, Seungyong Lee, and Charles K. Chui.
2007. Coherent line drawing. In Proceedings of the
5th international symposium on Non-photorealistic
animation and rendering (NPAR '07).

[21] Henry Kang, Seunyong Lee. Shape-simplifying Image
Abstraction. Pacific Graphics 2008.

[22] Henry Kang, Seungyong Lee, and Charles K. Chui.
2009. Flow-Based Image Abstraction. IEEE

Transactions on Visualization and Computer
Graphics 15, 1 (January 2009)

[23] Jan Eric Kyprianidis, Henry Kang. Image and Video
Abstraction by Coherence-Enhancing Filtering.
Proceedings Eurographics 2011.

[24] William Baxter, Jeremy Wendt, and Ming C. Lin.
2004. IMPaSTo: a realistic, interactive model for
paint. In Proceedings of the 3rd international
symposium on Non-photorealistic animation and
rendering (NPAR '04),

[25] Aaron Hertzmann. 1998. Painterly rendering with
curved brush strokes of multiple sizes. (SIGGRAPH
'98).

[26] Yutaka Goda, Tsuyoshi Nakamura, and Masayoshi
Kanoh. Texture transfer based on continuous structure
of texture patches for design of artistic Shodo fonts. In
ACM SIGGRAPH ASIA 2010 Sketches (SA '10).

[27] Charles Hansen, Chris R. Johnson. Visualization
Handbook. 2005 Elsevier Inc. ISBN: 978-0-12-
387582-2

[28] Paul Haeberli. 1990. Paint by numbers: abstract image
representations. (SIGGRAPH '90).

[29] Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer
Leyvand, and Ying-Qing Xu. 2006. Color
harmonization. In ACM SIGGRAPH 2006 Papers
(SIGGRAPH '06).

[30] B. Jobard and W. Lefer, "Creating Evenly-Spaced
Streamlines of Arbitrary Density," Proc. Eurographics
Workshop Visualization in Scientific Computing.
1997.

Figure 13. Various styles achievable using our painter (source images available in the Processing project folder)

Figure 14. High detail painting with the color opponency theme and moderate edge protection.

