
Centroidal Particles for Interactive Crowd Simulation
Omar Hesham Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada

omar.hesham@carleton.ca, gwainer@sce.carleton.ca

ABSTRACT
Real-time crowd simulation is a challenging task that de-
mands a careful consideration of the classic trade-off be-
tween accuracy and efficiency. Existing particle-based
methods have seen success in simulating crowd scenarios
for various applications in the architecture, military, urban
planning, robotics, and entertainment (film and gaming)
industries. In this paper we focus on local dynamics and
present an area-based penalty force that captures the in-
fringement of each entity’s personal space. This method
does not necessitate a costly nearest-neighbor search and
allows for an inherently data-parallel implementation that is
capable of simulating thousands of entities at interactive
frame-rates. The algorithm successfully reproduces per-
sonal space compression around motion barriers for moving
crowds and around points of interest for static crowds.

Author Keywords
Crowd; penalty force; interactive; GPGPU

ACM Classification Keywords
I.6.5 [Simulation and Modeling]: Model Development; I.3.7
[Computer Graphics]: Animation; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence.

1. INTRODUCTION
The Modeling and Simulation (M&S) of virtual crowds has
found a certain appeal as an illustrative tool in urban and
architectural projects. It allows designers and engineers to
visualize the utility of their project’s space and facilitates
the feedback, discussion, and decision-making among all
stakeholders, be they technical, business-oriented, or oth-
erwise.

A more demanding tier of crowd simulation is seen in the
entertainment and serious gaming industries. While theo-
retical accuracy is desired in this context, the practical con-
cerns favour other objectives: visual believability, stability
in an unpredictable environment, and the performance to
meet the real-time requirements of interactive experiences.
Creative applications further demand a certain degree of
artistic control. In a similar vein, serious gaming, which
often involves interactive scenarios for training, education,
and social purposes, tends to aim for model accuracy but

ends up favoring performance that maintains a fluid simu-
lated scenario for the learner. Advances in parallel comput-
ing and ever increasing hardware affordability are helping
close the gap towards accuracy in interactive simulation,
including on low-power and mobile devices.

Figure 1. Crowd abstraction hierarchy.

The most demanding tier of crowd simulation applications
comprises civil safety analysis tools, contingency planning,
and military applications. The simulation of emergency
evacuation procedures, prediction of traffic bottlenecks, and
shaping of pedestrian flow by manipulating access point
allocations and doorway designs, are all examples of de-
sign-stage activities in this tier. They help the authorities
assess threats and plan preventative measures that minimize
the risk of disasters in large crowded events such as outdoor
music festivals, public forums, and sporting events [1]. Due
to their critical nature, the models typically require a high
degree of validated accuracy, data-driven calibration, and
conformity with existing modeling standards such as High-
Level Architecture (HLA) or with industrial formats such as
Building Information Modeling (BIM) [2].

This diversity of application requirements induced an
equally rich variety of approaches to the modeling and ab-
straction of crowd behaviour. A fairly common hierarchy of
systems divides the process into three interoperating levels:
a cognitive model, a global pathing model, and a local in-
teraction model. As illustrated in Figure 1, the cognitive
model is typically tasked with broad decision-making, such
as deciding where the target location is, and interacting with
entity goals and personality traits that could alter such deci-
sions (e.g. taking the stairs instead of the elevator, or fol-
lowing a parent during an evacuation instead of taking the
nearest exit). Once the target location is decided, the global
pathing module analyzes the spacial structure of the mostly

SCSC 2016, July 24-27, 2016, Montreal, Quebec, Canada
© 2016 Society for Modeling & Simulation International (SCS)

mailto:omar.hesham@carleton.ca
mailto:gwainer@sce.carleton.ca

static environment and finds an optimal path according to
some cost minimization; typically the shortest path or the
least congested one. Finally, the local interaction module
further modifies the path to navigate around and avoid col-
lision with minor dynamic obstacles, which include other
pedestrians, gates, and doorways, while still generally fol-
lowing the optimal path and not straying too far from it.

While there are methods that blur the lines a bit and attempt
to solve more than one level at once (e.g. [3]), the modular
hierarchy approach encourages the separation of concerns
and allows further experimentation and mixing of compo-
nents and solutions from various sources.

Our contribution focuses on local dynamics in an interac-
tive entertainment and serious gaming context. To this end,
we propose an area-based penalty force and demonstrate
promising results obtained from consumer-grade graphics
hardware. The model successfully reproduces empirically
known crowd phenomenon such as lane formation in bidi-
rectional flow and regular banding around areas of conges-
tion [4]. In addition, our model is capable of reproducing a
still compression effect, which is the accumulative reduc-
tion of personal space near areas of high congestion and
around points of interest (e.g. near the stage at a concert).

This is a challenging effect to simulate for static/near-static
crowds, where previous methods relied mostly on the rela-
tive velocities between entities and would have a difficult
time distinguishing between static entities at varying dis-
tances from a barrier or an area of collective interest [5, 6].
As demonstrated in Figure 2, our area-based force is able to
aggregate such a compression of personal space in high
density stationary crowds. Furthermore, the area force is
customizable through graphical parameters that are de-
signer-friendly for creative control and for the introduction
of non-homogeneity into the system. This local interaction
force can be integrated with existing global pathing
schemes or used to augment the calculations of other local
avoidance methods.

Figure 2. An “invisible force”: the gradual compression of per-
sonal space among a static crowd near areas of interest or barriers
to desired motion. Marathon start line (top); our simulated result
(bottom).

We discuss the relevant background next, followed by a
geometric description of our proposed method and a discre-
tized graphics pipeline implementation. Lastly, we highlight
some key results before briefly discussing opportunities for
improvement, including thoughts on the conversion from a
discrete-time evaluation to a more efficient discrete-event
model.

2. RELATED WORK
Replicating human decision-making is a highly ambitious
endeavor, never mind simulating an entire crowd of them.
To this end, the abstraction of motion dynamics based on
the generalization of observed phenomenon is necessary to
achieving a computable result. This section presents a brief
overview of the multitude of methods developed to tackle
this problem. For a more detailed analysis, the reader is
referred to the critical assessment done in [4, 7].

Early efforts to simulate crowd motion took a macroscopic
approach that modeled the crowd collectively as a singular
fluid-like object which exhibited interactions over a contin-
uum [8, 9]. Flow-based methods have since evolved, with
notable contributions such as Continuum Crowds [3] deliv-
ering visually convincing large-scale results at interactive
frame rates, suitable for animation, gaming, training, and
educational media. Others take an operational research ap-
proach, where the simulation space is reduced to a graph on
which network optimization methods could be applied [10].
For instance, in a building evacuation scenario, rooms are
mapped to graph nodes, and the hallways connecting them
are mapped onto graph edges. The graph is solved for the
shortest path to identify optimal exit routes. Computing the
graph’s maximum flow would help identify potential bot-
tlenecks and prioritize future developments around those
nodes.

Overall, macroscopic methods are considered computation-
ally inexpensive, making them suitable for large-scale pro-
jects that involve high crowd densities. This level of ab-
straction is most appropriate when seeking a general sense
of a crowd’s orientation, density distribution, and collective
rate of locomotion. They are also suitable to model the
physical interactions that cause a transfer of energy in dense
crowds, supporting the pre-emptive contingency planning
for preventable physical phenomenon such as crowd waves,
crushes, and stampedes. However, they typically incorpo-
rate a certain degree of aggregation that hides the details of
the individual entity-to-entity interactions.

By contrast, microscopic methods rely on simulating each
entity individually in an agent-based fashion, and tuning the
local interaction laws so that the emergent global behaviour
reproduces real crowd phenomenon. Developments in this
area include Reynold’s flocking model [11], Helbing’s so-
cial forces [12], HiDAC [6] which incorporates psychologi-
cal models and pushing behaviour, and a wide array of Cel-
lular Automata (CA) implementations. CA methods are
particularly popular in architectural contexts [13] due to
their inherent efficiency and rapid visualization. In CA, a

given 2D or 3D space is discretized into a uniform lattice of
non-overlapping cells, typically forming a square grid, but
can also be based on any tileable shape that forms a consis-
tent neighbourhood pattern. A global clock periodically
triggers a simultaneous update of all entities, where the next
state of each cell is determined the by the state of all cells in
its neighbourhood. When taken to an extreme, microscopic
algorithms could also opt to simulate the individual joints
of every entity’s anatomy (e.g. legs on a human, pedals on a
bike, etc.) in order to generate the mechanically accurate
locomotion towards a known target location [14].

More recent efforts have evolved from an observation that
humans are anticipatory in their motion, able to predict
when and where a collision is likely to occur, and enacting
avoidance manoeuvres well in advance of such an event.
This behaviour was extensively studied and analyzed to
produce predictive models [15] that avoid collision in a
manner that closely mimics empirical data. Real-time im-
plementations in this category include the Reciprocal Ve-
locity Obstacles (RVO) [16], and a vision-based approach
that renders a depth map of the scene from each entity’s
perspective to evaluate the appropriate avoidance manoeu-
vres [17].

3. METHOD
We propose a personal area-based microscopic method that
at dense enough scenarios produces physical interactions,
pressure propagation waves, and compression of personal
space due to the crowd’s collective attraction to an area of
interest, where it behaves as a compressible fluid, even
when the crowd is stationary. We start with an overview of
the processing pipeline followed by a breakdown of the
collision penalty force and its parameterization.

3.1. Overview
To simulate local pedestrian interactions, we first compute
a combined personal space violation map, from which we
are able to compute reactive penalty forces. The way each
entity contributes to the personal space can be modified and
parameterized visually through weight maps. Finally, the
new location for each entity is computed by integrating the
net acceleration force iteratively over several frames.

3.2. Personal Space
Each entity is represented by a particle in the 2D plane sur-
rounded by a contiguous area of personal space (PS) foot-
print. Based on the experiments done in [15], the personal
space is about ~0.8m evenly around the center of the entity.
In addition, as the entity gains velocity, there is a further
elongation of the personal space in the direction of travel
that is directly proportional to the speed. That is, humans
typically expect an increasingly empty area ahead of them
as they gain speed.

As entities get within proximity of each other, we assume
that the personal space becomes shared equidistantly be-
tween them. The closer those entities are to one another, the
more they equally violate the other’s personal space. We

also assume, as experiments have shown in [15], that
there’s a short delay to human response, requiring a brief
time (~150-350ms) to react to their surroundings and enact
their collision avoidance manoeuvres. From this view, we
propose an area-based penalty force that reacts to the PS
violation in an iterative manner, attempting to restore the
preferred PS area over several frames.

For any point in a given entity’s PS to be considered unvio-
lated, it has to be closer to that entity than any other entity.
The concept of sharing a space equidistantly as such evokes
the tessellations produced by the Voronoi Diagram. In fact,
we start by subjecting our entities and their personal space
to an analysis similar to the one found in the Centroidal
Voronoi Tessellation (CVT) relaxation algorithm [18]. We
overlay the combined entity personal spaces onto a shared
map, called the personal space map (PSM) that produces a
tessellation that clearly aggregates and outlines all PS viola-
tions.

Given the PSM, each entity can independently compute the
current unviolated area’s centroid (i.e. its new geometric
center). In CVT relaxation, the particle is simply moved to
the new centroid, whereas in this calculation we treat the
vector from the center of the original footprint to this new
centroid as the basis for the penalty force calculation.

The force is illustrated in Figure 3. Typically, there’s a pri-
mary directional force that moves the entity towards its
destination, and it’s typically given by the global pathing
scheme. The assumption is that the entity would reach its
goal if it follows that vector, given that there are no obsta-
cles in its path. The penalty force is added to the global
pathing force, resulting in the reactive behaviour of our
crowd. The magnitudes of those forces and their stochastic
variations are adjusted to create a smooth transition to the
entity’s comfort speed, cs. On average, a comfort speed for
walking is 1.4±0.24m/s [15], but can be further calibrated
as described in the next sections.

Due to the iterative nature of the algorithm, we end up with
a slight transfer of energy, causing the gradual compression
of personal space around areas of congestion for moving
crowds and areas of interest for stationary ones. This is a
welcomed effect as demonstrated in the results of Section 5.

Figure 3. The net force (f) experienced by an entity is a linear

combination of the global pathing force (g), and the penalty force
(p) which falls along the direction of the new centroid.

3.3. Particle Parameterization
So far, we’ve been treating the personal space as a uni-
formly weighted homogenous area. However, we can fur-
ther modify the local dynamics by changing the footprint’s
geometry or using a map to influence its weight. The con-

cept is briefly illustrated in Figure 4. The personal space
footprint can be artificially varied over time or in response
to global events (e.g. a fire alarm evacuation) or in prox-
imity to points of interest (e.g. slowing down when window
shopping or near interesting booths at a busy exhibit hall).
The footprint shape can also change to reflect the entity
type (e.g. adult, child, stroller, etc.).

The footprint can also accept a weight map which, through
simple convolution, varies the impact of the PS infringe-
ment. For instance, placing a slightly heavier weight on the
right side of the footprint to indicate a preference for taking
the “right lane” when encountering oncoming traffic.

These are all very intuitive and graphical parameterizations
that are artist/designer-friendly, without requiring deep
technical knowledge of the implementation or the code in-
volved. This makes it suitable for manipulation under art
direction in a studio setting (e.g. film, gaming) and for edu-
cational scenarios that don’t conform to ideal conditions,
such as having “difficult” or aggressive crowd members, or
culling the footprint of a distracted pedestrian (e.g. on their
cell phone) to simulate the increased likelihood of such an
entity’s repeated collision and possible injury.

Figure 4. Variations of PS footprints via shape and weight maps.

Furthermore, a simple web of 1D springs can be attached
between entities that should remain together, such as a fam-
ily or a row of friends. This allows each entity to still inter-
act with and be affected by its environment independently,
yet adds a delayed constraint (the spring) that eventually
maintains the group’s cohesion whenever possible. Those
springs can have strain limits at which point the spring is
broken, simulating a member of the group getting lost or
stuck amidst a dense crowd away from its group.

3.4. Comfort Speed
We employ the notion of the fundamental diagram [19],
where pedestrian speeds, on average, vary inversely to their
local density. Empirical data has shown that the fundamen-
tal diagram differs depending on the context of the crowd
(e.g. indoors mall vs. crosswalk) and also across cultures.
We use it to determine the comfort speed for each individ-
ual entity dynamically throughout the simulation. The den-
sity can be computed in a uniform grid, or as we will cover
in the implementation section, utilize the personal space
area to directly estimate the local density.

4. IMPLEMENTATION
The PSM presented in Section 3.2 can be treated as a trun-
cated Voronoi diagram, whose cells are bounded by a cer-
tain distance from their sites.

To achieve the high performance desired in interactive ap-
plications, we take a cue from the GPU-accelerated compu-
tation of Voronoi diagrams in [20] and develop a similar
pipeline here.

Textured 3D cones are used to represent the entities and
their personal space, with the tip of the cone representing
the footprint center, and the base representing the outer
edges of the personal space. In effect, the height along the
surface of the cone encodes the distance to the center of the
entity. When rendered from an orthographic top view (free
of any perspective distortion) facing the tips, two cones will
overlap at precisely the points that are equidistant to both
entities. Figure 5 visualizes this calculation.

By encoding the entities as geometric primitives and using
the GPU’s depth buffer to quickly obtain the PSM tessella-
tion as discrete pixels, we are left with a shared data struc-
ture that allows each entity to compute its relative centroid
and resulting penalty forces in a data-parallel fashion. The
entities do not need to conduct a costly nearest neighbor
search, as they simply consume and interact with the set of
pixels representing their personal space in the PSM.

Figure 5. Side view of 3D Cones (left); PSM allows each entity to
compute forces in a highly localized data-parallel fashion (right).

The mass of the individuals can be modeled by adjusting
the height of the cones. The heavier the individual is (less
likely to be affected by force), the closer the cone should be
to the camera. Essentially, the lighter individuals would
have to exert more force in order to make up for their in-
creased distance from the camera and infringe on the heav-
ier individual’s space.

In order to differentiate between the rendered cones, they’re
colored using a reversible hash map that is a function of the
unique entity IDs. For our purposes, we reserve the first
dozen colors in the 24-bit RGB space for obstacles and de-
bugging purposes, and utilize the rest to uniquely color
code each entity. The reverse lookup (which is also a con-
stant cost function) enables any entity to directly identify
the ID of another entity infringing on its pixel space.

Hence we can theoretically simulate more than 16 million
entities on a 24-bit RGB rendering surface, and potentially
billions on higher bit-depth surfaces. Though, practically
speaking, 16 million entities would end up using a single
pixel each on a 4k×4k PSM map, as a best case-scenario.
More on such scalability issues is discussed in Section 4.1.

To compute the true center of PS footprints that have an
influence map, vary by time, or are proportional to the en-
tity’s speed (as discussed in the Section 3.3), we first cali-
brate the shape for bias and then adjust the cone tip and
texture accordingly. Without this step, an asymmetrical PS
area that, for instance, elongates with speed will experience
an ever increasing force in the direction of travel. Instead
the collision-free bias should be taken into account in order
to detect true violations of the PS footprint.

There are two ways to compute the centroid from the PSM:

a) Per-pixel aggregation - if there is overcrowding result-
ing in significant PS overlap, and then it is more eco-
nomical to only count the visible pixels and aggregate
the results using the reverse hash lookup.

b) Per-entity aggregation - in sparser scenarios, it’s more
efficient to skip the PSM’s empty pixels and simply
count the valid pixels in the vicinity of each entity.

A simple threshold we used in our implementation checks:
if (|entities|×πr2) > (1.2×PSM area) perform (a); else per-
form (b), where r is the footprint radius. We take each PSM
pixel to represent 10×10cm, so our PS radii range from 6 to
10 pixels, as sizes vary in a crowd.

4.1. Scalability
GPUs are highly efficient when it comes to massively data-
parallel processing, but they also have built-in memory
limitations on texture sizes, and by extension, the size of the
PSM maps we can compute for a given scene. A possible
route is to use a courser grid to represent the scene, at the
cost of simulation fidelity. The more reasonable approach
in this instance is tiling. Regardless of the shape and com-
plexity of the simulation plane, it can be divided into tiles.
A straightforward approach that minimizes communication
across tiles is to have them overlap their computation space
by an amount equal to the average entity PS radius. Similar
to how we skip empty pixels in sparse crowds, we extend
the concept by skipping entire tiles if they’re empty, and
only processing the occupied ones.

These tiles can be dispatched for simultaneous processing
across multiple GPUs if available. Furthermore, the recent
development of low-overhead graphics APIs like Khronos
Vulkan and Microsoft DirectX12 encouraging the multi-
threaded dispatching of render-calls [21] supports the scal-
ability potential of our presented method.

4.2. Density Estimation
To compute the per-entity comfort speed discussed in Sec-
tion 3.4, we need to obtain an estimation of the local crowd
density near each entity. We leverage the existing PSM to
estimate the value di (entities/m2) as the reciprocal of its
visible (unviolated) PS area.

Once known, we render another PSM pass, but this time
color every entity i using the estimated di, where brighter
values correspond to higher densities. We then smooth the
discontinuities using a Gaussian blur filter; again a very

standard and parallel-friendly utilization of the graphics
pipeline. The resulting density field, seen in Figure 6, is
sampled for the comfort speed calculation in the following
time step.

It might be argued that better density estimation methods
exist, such as those found in physics simulations using Soft
Particle Hydrodynamics (SPH) that rely on cubic kernels to
accurately converge to a true density continuum [22]. How-
ever, we opted for the simpler Gaussian kernel across our
PSM with a radius of half a footprint’s radius in effective
pixels. Not only is the result sufficient for our purposes (an
estimation of density), but it also helps that it isn’t too pre-
cise since the fundamental diagram is only an aggregate of
human behaviour that hides individual variations and hu-
man inaccuracies that would naturally occur from an entity
subconsciously assessing its surrounding. Furthermore, the
Gaussian filter is linearly separable meaning we can blur all
the rows first using a 1D Gaussian, then blur the columns to
obtain the final 2D Gaussian blur. This optimizes the com-
putation of the convolution from a quadratic O(𝑛𝑚2) com-
putation to a more linear O(𝑛𝑚), where 𝑛 is the number of
pixels in space, and 𝑚 is the radius of the filtering kernel.

Figure 6. Local density is estimated per entity (left) then a global

low-pass filter (right) is applied to obtain a smooth field.

5. SIMULATION RESULTS

5.1. Setup
For each scenario, we initialize entity positions and orienta-
tions, and randomize a few parameters such as weight, size,
and a comfortable speed base. For demonstration and test-
ing purposes we use simple global pathing schemes such as
A*, floor maps, or global vectors to target positions [13].
The simulation time step used is 50ms, as we did not notice
an improvement in quality by going with a finer time delta.

Videos and accompanying source code can be obtained
from http://vs3.sce.carleton.ca/wordpress/ .

5.2. Results
Figures 7-11 illustrate the results, including a variety of
emergent phenomenon reproduced by our algorithm. Lane
formation in bidirectional flow is an innate pedestrian opti-
mization strategy that is observed in narrow hallways to
minimize resistance to their otherwise opposing directions
of motion. Figure 7 illustrates this scenario, while Figure 8
displays the performance achievable with two different test

http://vs3.sce.carleton.ca/wordpress/

systems. The first is a mobile-class Intel Core i5-3337U
2.7GHz processor with integrated graphics (that is, the CPU
is also responsible for all graphical processing), and the
second is a desktop AMD A10-7850 3.7 GHz CPU with a
dedicated Nvidia GTX970 graphics card. We consider
simulations running at 12fps to be reasonably interactive,
8fps a bare minimum experience, and 20fps essentially real-
time (given the 50ms simulation time step).

Figure 7. Natural lane formation during a bidirectional flow simu-

lation of 1000 entities on a 600×800 PSM grid (blue entities
headed south; red headed north).

What is important to note from Figure 2 is that this is not a
static distribution or placement algorithm, but rather the
emergent behaviour of a fully dynamic local interaction-
based force for stationary crowds and pedestrians in mo-
tion. In sparse scenarios, the penalty force acts like a micro-
scopic method whose goal is to avoid collision with nearby
entities, while in denser cases where collision and physical
contact are likely, it starts displaying macroscopic qualities
that collectively treat the crowd as a singular fluidic object,
exhibiting waves and energy propagation among its indi-
viduals.

At less than 0.5m2 of personal space per entity, the crowd
reaches a critical density [23], where entities are subject to
enough pressure to cause significant discomfort, if not out-
right injury or worse. This is a common concern in large-
event contingency planning, and simulation can help iden-
tify pockets of potentially unsafe accumulation and over-
crowding of attendees [24]. In Figure 9, a crowd of 1000
entities in a confined space is reacting to the fact that they
are over-crowded. Requiring neither a cognitive model nor
a global pathing scheme, the penalty force is sufficiently
able to naturally and gradually restore the compressed
crowd to a more comfortable distribution, filling the room if
necessary until every entity reaches a suitable state. This
can be seen in real life when crowds are held behind barri-
ers and a gate opens allowing the otherwise compressed
crowd to diffuse through.

Those on the outer edge of the crowd have less density to
deal with, so naturally, as we would expect in reality, they
have the greatest freedom to accelerate to higher speeds
compared to those that are relatively slowed or still trapped
near the middle. We utilize this effect to simulate the emer-
gent behaviour at a marathon race start. As visualized in
Figure 10, the wave of delayed acceleration is the result of
those at the front of the race having the advantage of lower
density ahead of them, allowing them to sprint ahead sooner

while those behind are stuck to less competitive speeds,
until the delayed wave catches up to them eventually and
the speeds equalize. Unlike the compressed room in Figure
9, this scenario has a global goal vector along the marathon
track applied evenly to all contestants; but the penalty force
is able to reproduce the observed acceleration wave effect.

Figure 8. Simulation performance of the bidirectional scenario

illustrated in Figure 7, varied by number of pedestrians.

Figure 9. Penalty forces are sufficient to cause an overcrowded
room (left) to diffuse to a more comfortable equilibrium (right),

where any further motion would not improve the situation.

Figure 10. The gradual release of density-dependent velocity.
Left: snapshots of marathon start; Right: our simulated result.

1
2
4
8

16
32
64

128
256

5 20

10
0

25
0

50
0

1,
00

0
1,

50
0

2,
00

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

10
0,

00
0

14
0,

00
0

Fr
am

es
/s

ec
on

d
(f

ps
)

Desktop w/ dedicated GPU
Laptop w/ integrated GPU

The compression of personal space in static crowds is rarely
seen in political protests or general gatherings of people
where there isn’t a focal point of interest or a barrier to mo-
tion in a desired direction. In such cases, a more even dis-
tribution emerges, such as the one in Figure 9.

Huddled crowds, as seen in Figures 2 and 11, have a ten-
dency to fill the space semi-regularly, equalizing the num-
ber of neighbours surrounding each entity. They also ex-
hibit a petal-like pattern, with entities preferring to stand
between the shoulders of those ahead, instead of directly
behind them.

Figure 11. At equilibrium, our method reproduces the emergent

banding and semi-regular distribution among a static crowd.

5.3. A Discrete-Event Approach
The Lagrangian evaluation of crowd dynamics is well-
established for discrete-time simulation. But in cases where
there is a clear discretization of states and events, it can be
worthwhile to pursue a discrete-event implementation of
those state variables and their transitions. The key idea here
is to perform the state update only when necessary. That is,
instead of calculating the motion of the all the entities syn-
chronously at regular time intervals, each entity would in-
stead asynchronously evaluate its own state (e.g. cognitive
goals) and the local environment to compute a state transi-
tion in an event-driven fashion.

Cellular Automata (CA) and similar Eulerian fixed grid
approaches are notably popular in discrete-event crowd
simulation [25]. But in order to accommodate freeform and
non-axis-aligned structures, we were motivated from the
start to instead consider a Lagrangian approach to comput-
ing the relevant physical quantities -i.e. the position, orien-
tation, and vision assessment being computed at the vector
location of each entity as it moves continuously through
space. Even so, we do borrow the fundamental idea from
discrete-event Eulerian methods, in that an entity should not
update its state unless its local neighbourhood has experi-
enced a significant change that triggered an event. This
spares a lot of needless computation for entities that have
reached equilibrium, and is particularly relevant for this
paper where we study stationary crowds.

Our algorithm was designed with this optimization in mind.
Specifically, the globally accessible PSM is a convenient
way for each entity to independently interact with its
neighbourhood; notifying and being notified about changes
and relevant events without requiring direct communication

with nearby entities. Implementation-wise, each entity is
“registered” to listen to the changes in its surrounding pix-
els (not nearest neighbours). Those pixels normally exist in
close proximity and exhibit favourable memory access pat-
terns. It’s noteworthy that, with careful modelling, an Eule-
rian grid can be emulated in a Lagrangian engine, maintain-
ing compatibility with existing Eulerian models and tools.

6. LIMITATIONS AND OPPORTUNITIES
While this lightweight force is capable of producing a vari-
ety of visually convincing emergent crowd behavior on its
own, it is equally suitable for integration with existing par-
ticle-based methods if desired. For more serious applica-
tions that rely on data-driven calibration and rigorous accu-
racy requirements, the idea of encoding local interactions as
geometric primitives requires further study. A worthy pur-
suit is the geometric encoding of velocity-space collision
avoidance schemes, such as RVO optimization, which al-
low for calibration and the accurate reproduction of kinetic
trajectories of microscopic pedestrian interactions. The
challenge in describing the RVO scheme geometrically is in
its empirically-motivated assumption that collision avoid-
ance is a shared effort between nearby entities, thus requir-
ing that entities know about and share information with
their nearest neighbours, something we’ve been actively
avoiding in our performance-minded GPU implementation.

The event-driven approach described earlier in Section 5.3
can be further applied on a per-parameter basis, assigning
certain events to trigger specific state variable updates. As
the complexity of such event-driven models increases, fol-
lowing a standard modeling formalism such as DEVS (Dis-
crete Event System Specification) can aid in the model’s
design and management of its complexity [26]. Such for-
malisms typically provide highly optimized universal simu-
lation engines, allowing the modeller to focus on abstract-
ing the behaviour being studied, without concern for im-
plementation details. Pursuing such an approach would pre-
sent several advantages compared to plain CA or homebrew
event-driven solutions, namely: composability with the ex-
isting library of DEVS models and architecture systems
(e.g. [27]); interfacing with modeling standards such as
HLA; and the ability to submit the model to formal verifica-
tion, validation, and static analysis techniques [28] (e.g.
deadlock detection, unreachable states, etc.).

We began the exploration of this centroidal area force in the
context of crowd simulation due to the natural limits of hu-
man acceleration and velocity. And while it might be tempt-
ing to directly use this force for physics-based simulation of
fluids, soft-bodies (such as clay), and granular solids (such
as sand), the unpredictable, often chaotic, and extreme ac-
celerations experienced within those bodies require a more
careful consideration of the utility of this force. It would be
difficult to entirely dismiss the nearest neighbor search if
our “implicit collision” response force was to be used for
physics-based simulation. However, in its current form, the
effort presented in this paper certainly opens the possibility

for less critical applications such as film, gaming, and im-
mersive virtual reality (VR) experiences.

7. CONCLUSION
This paper introduces a method to compute a given crowd’s
local dynamics in an interactive application context, and it
demonstrated several emergent patterns of dense crowds in
static or near-static conditions. Our main contribution is an
area-based penalty force that gradually aggregates the in-
fringement of personal space in order to assess the appro-
priate response from each entity. We presented an imple-
mentation that encodes the proximity information into
geometric shapes and textural maps, turns the neighbour-
hood computation into a matter of simply rendering those
shapes through a typical 3D graphics pipeline, and simu-
lates thousands of entities at interactive frame rates.

Acknowledgements
This research was partially supported by a Queen Elizabeth
II Scholarship in Science & Technology. The authors thank
Michael Van Schyndel and Chris Joslin for their insights
into crowd dynamics, and thank the anonymous reviewers
for their critique and valuable feedback.

REFERENCES
1. Earl, C., Raineri, A. & Others. Crowd management for

outdoor music festivals. Journal of Occupational Health
and Safety, Australia and New Zealand 21, 205 (2005).

2. Azhar, S. Building Information Modeling (BIM):
Trends, Benefits, Risks, and Challenges for the AEC
Industry. Leadership and Management in Engineering
11, 241–252 (2011).

3. Treuille, A., Cooper, S. & Popović, Z. Continuum
crowds. ACM SIGGRAPH 2006 Papers (2006).

4. Duives, D. C., Daamen, W. & Hoogendoorn, S. P. State-
of-the-art crowd motion simulation models. Transp. Res.
Part C: Emerg. Technol. 37, 193–209 (2013).

5. Lu, C. Analysis of Compressed Force in Crowds.
Journal of Transportation Systems Engineering and
Information Technology 7, 98–102 (2007).

6. Pelechano, N., Allbeck, J. M. & Badler, N. I.
Controlling Individual Agents in High-density Crowd
Simulation. SIGGRAPH/Eurographics SCA (2007).

7. Huerre, S., Lee, J., Lin, M. & O’Sullivan, C. Simulating
Believable Crowd and Group Behaviors. ACM
SIGGRAPH ASIA 2010 Courses (2010).

8. Peschl, I.A.S.Z. Passage Capacity of Door Openings in
Panic Situations. BAUN (1971).

9. Smith, R. A. Volume Flow Rates of Densely Packed
Crowds. Engineering for Crowd Safety (1993).

10. Kisko, T. M., Francis, R. L. & Nobel, C. R.
EVACNET4 User’s guide. University of Florida (1998).

11. Reynolds, C. W. Steering behaviors for autonomous
characters. Game Developers Conference (1999).

12. Helbing, D., Farkas, I. & Vicsek, T. Simulating
Dynamical Features of Escape Panic. Nature (2000).

13. Bandini, S., Manzoni, S., & Vizzari, G. Crowd
Modeling and Simulation. Innovations in Design &
Decision Support Systems in Architecture and Urban
Planning, 105-120 (2006).

14. Brogan, D. C., Metoyer, R. A. & Hodgins, J. K.
Dynamically Simulated Characters in Virtual
Environments. IEEE Comput. Graph. Appl. (1998).

15. Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A. &
Donikian, S. Experiment-based Modeling, Simulation
and Validation of Interactions between Virtual Walkers.
ACM SIGGRAPH/Eurographics SCA 189–198 (2009).

16. den Berg, J. van, Lin, M. & Manocha, D. Reciprocal
Velocity Obstacles for real-time multi-agent navigation.
IEEE Intl. Conf. on Robotics and Automation (2008).

17. Ondřej, J., Pettré, J., Olivier, A.-H. & Donikian, S. A
Synthetic-vision Based Steering Approach for Crowd
Simulation. ACM Transactions on Graphics (2010).

18. Secord, A. Weighted Voronoi Stippling. International
Symposium on Non-photorealistic Animation and
Rendering 37–43 (2002).

19. Chattaraj, U., Seyfried, A. & Chakroborty, P.
Comparison of Pedestrian Fundamental Diagram across
Cultures. Adv. Complex Syst. 12, 393–405 (2009).

20. Hoff, K. E., III, Keyser, J., Lin, M., Manocha, D. &
Culver, T. Fast Computation of Generalized Voronoi
Diagrams Using Graphics Hardware. Conference on
Computer Graphics and Interactive Techniques (1999).

21. Shiraef, J. A. An exploratory study of high performance
graphics application programming interfaces. University
of Tennessee at Chattanooga (2016).

22. Pelupessy, F. I., Schaap, W. E. & van de Weygaert, R.
Density estimators in particle hydrodynamics.
Astronomy & Astrophysics 389-298 (2003).

23. Fruin, J. J. The causes and prevention of crowd
disasters. Engineering for Crowd Safety 1, 10 (1993).

24. Special Events Contingency Planning. FEMA (2005).
25. Al-Habashna, A. & Wainer, G. Modeling pedestrian

behavior with Cell-DEVS: theory and applications.
Simulation (2015).

26. Zeigler B, Praehofer H and Kim T. Theory of modeling
and simulation. San Diego, CA: Academic Press (2000).

27. Schaumann, D., Kalay, Y. E., Hong, S. W. & Simeone,
D. Simulating human behavior in not-yet built
environments by means of event-based narratives.
SimAUD (2015).

28. Olamide, S. E. & Kaba, T. M. Formal Verification and
Validation of DEVS Simulation Models. AFRICON 1-6
(2013).

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	Acknowledgements

	REFERENCES

