
Centroidal Particles for Interactive Crowd Simulation 
Omar Hesham Gabriel Wainer 

Department of Systems and Computer Engineering 
Carleton University, Ottawa, Canada 

omar.hesham@carleton.ca, gwainer@sce.carleton.ca  

 

ABSTRACT 
Real-time crowd simulation is a challenging task that de-
mands a careful consideration of the classic trade-off be-
tween accuracy and efficiency. Existing particle-based 
methods have seen success in simulating crowd scenarios 
for various applications in the architecture, military, urban 
planning, robotics, and entertainment (film and gaming) 
industries. In this paper we focus on local dynamics and 
present an area-based penalty force that captures the in-
fringement of each entity’s personal space. This method 
does not necessitate a costly nearest-neighbor search and 
allows for an inherently data-parallel implementation that is 
capable of simulating thousands of entities at interactive 
frame-rates. The algorithm successfully reproduces per-
sonal space compression around motion barriers for moving 
crowds and around points of interest for static crowds. 
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1. INTRODUCTION 
The Modeling and Simulation (M&S) of virtual crowds has 
found a certain appeal as an illustrative tool in urban and 
architectural projects. It allows designers and engineers to 
visualize the utility of their project’s space and facilitates 
the feedback, discussion, and decision-making among all 
stakeholders, be they technical, business-oriented, or oth-
erwise.  

A more demanding tier of crowd simulation is seen in the 
entertainment and serious gaming industries. While theo-
retical accuracy is desired in this context, the practical con-
cerns favour other objectives: visual believability, stability 
in an unpredictable environment, and the performance to 
meet the real-time requirements of interactive experiences. 
Creative applications further demand a certain degree of 
artistic control. In a similar vein, serious gaming, which 
often involves interactive scenarios for training, education, 
and social purposes, tends to aim for model accuracy but 

ends up favoring performance that maintains a fluid simu-
lated scenario for the learner. Advances in parallel comput-
ing and ever increasing hardware affordability are helping 
close the gap towards accuracy in interactive simulation, 
including on low-power and mobile devices. 

 
Figure 1. Crowd abstraction hierarchy. 

The most demanding tier of crowd simulation applications 
comprises civil safety analysis tools, contingency planning, 
and military applications. The simulation of emergency 
evacuation procedures, prediction of traffic bottlenecks, and 
shaping of pedestrian flow by manipulating access point 
allocations and doorway designs, are all examples of de-
sign-stage activities in this tier. They help the authorities 
assess threats and plan preventative measures that minimize 
the risk of disasters in large crowded events such as outdoor 
music festivals, public forums, and sporting events [1]. Due 
to their critical nature, the models typically require a high 
degree of validated accuracy, data-driven calibration, and 
conformity with existing modeling standards such as High-
Level Architecture (HLA) or with industrial formats such as 
Building Information Modeling (BIM) [2].  

This diversity of application requirements induced an 
equally rich variety of approaches to the modeling and ab-
straction of crowd behaviour. A fairly common hierarchy of 
systems divides the process into three interoperating levels: 
a cognitive model, a global pathing model, and a local in-
teraction model. As illustrated in Figure 1, the cognitive 
model is typically tasked with broad decision-making, such 
as deciding where the target location is, and interacting with 
entity goals and personality traits that could alter such deci-
sions (e.g. taking the stairs instead of the elevator, or fol-
lowing a parent during an evacuation instead of taking the 
nearest exit). Once the target location is decided, the global 
pathing module analyzes the spacial structure of the mostly 
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static environment and finds an optimal path according to 
some cost minimization; typically the shortest path or the 
least congested one. Finally, the local interaction module 
further modifies the path to navigate around and avoid col-
lision with minor dynamic obstacles, which include other 
pedestrians, gates, and doorways, while still generally fol-
lowing the optimal path and not straying too far from it.  

While there are methods that blur the lines a bit and attempt 
to solve more than one level at once (e.g. [3]), the modular 
hierarchy approach encourages the separation of concerns 
and allows further experimentation and mixing of compo-
nents and solutions from various sources. 

Our contribution focuses on local dynamics in an interac-
tive entertainment and serious gaming context. To this end, 
we propose an area-based penalty force and demonstrate 
promising results obtained from consumer-grade graphics 
hardware. The model successfully reproduces empirically 
known crowd phenomenon such as lane formation in bidi-
rectional flow and regular banding around areas of conges-
tion [4]. In addition, our model is capable of reproducing a 
still compression effect, which is the accumulative reduc-
tion of personal space near areas of high congestion and 
around points of interest (e.g. near the stage at a concert).  

This is a challenging effect to simulate for static/near-static 
crowds, where previous methods relied mostly on the rela-
tive velocities between entities and would have a difficult 
time distinguishing between static entities at varying dis-
tances from a barrier or an area of collective interest [5, 6]. 
As demonstrated in Figure 2, our area-based force is able to 
aggregate such a compression of personal space in high 
density stationary crowds. Furthermore, the area force is 
customizable through graphical parameters that are de-
signer-friendly for creative control and for the introduction 
of non-homogeneity into the system. This local interaction 
force can be integrated with existing global pathing 
schemes or used to augment the calculations of other local 
avoidance methods.  

 
Figure 2. An “invisible force”: the gradual compression of per-
sonal space among a static crowd near areas of interest or barriers 
to desired motion. Marathon start line (top); our simulated result 
(bottom). 

 

We discuss the relevant background next, followed by a 
geometric description of our proposed method and a discre-
tized graphics pipeline implementation. Lastly, we highlight 
some key results before briefly discussing opportunities for 
improvement, including thoughts on the conversion from a 
discrete-time evaluation to a more efficient discrete-event 
model. 

2. RELATED WORK 
Replicating human decision-making is a highly ambitious 
endeavor, never mind simulating an entire crowd of them. 
To this end, the abstraction of motion dynamics based on 
the generalization of observed phenomenon is necessary to 
achieving a computable result. This section presents a brief 
overview of the multitude of methods developed to tackle 
this problem. For a more detailed analysis, the reader is 
referred to the critical assessment done in [4, 7]. 

Early efforts to simulate crowd motion took a macroscopic 
approach that modeled the crowd collectively as a singular 
fluid-like object which exhibited interactions over a contin-
uum [8, 9]. Flow-based methods have since evolved, with 
notable contributions such as Continuum Crowds [3] deliv-
ering visually convincing large-scale results at interactive 
frame rates, suitable for animation, gaming, training, and 
educational media. Others take an operational research ap-
proach, where the simulation space is reduced to a graph on 
which network optimization methods could be applied [10]. 
For instance, in a building evacuation scenario, rooms are 
mapped to graph nodes, and the hallways connecting them 
are mapped onto graph edges. The graph is solved for the 
shortest path to identify optimal exit routes. Computing the 
graph’s maximum flow would help identify potential bot-
tlenecks and prioritize future developments around those 
nodes.  

Overall, macroscopic methods are considered computation-
ally inexpensive, making them suitable for large-scale pro-
jects that involve high crowd densities. This level of ab-
straction is most appropriate when seeking a general sense 
of a crowd’s orientation, density distribution, and collective 
rate of locomotion. They are also suitable to model the 
physical interactions that cause a transfer of energy in dense 
crowds, supporting the pre-emptive contingency planning 
for preventable physical phenomenon such as crowd waves, 
crushes, and stampedes. However, they typically incorpo-
rate a certain degree of aggregation that hides the details of 
the individual entity-to-entity interactions.   

By contrast, microscopic methods rely on simulating each 
entity individually in an agent-based fashion, and tuning the 
local interaction laws so that the emergent global behaviour 
reproduces real crowd phenomenon. Developments in this 
area include Reynold’s flocking model [11], Helbing’s so-
cial forces [12], HiDAC [6] which incorporates psychologi-
cal models and pushing behaviour, and a wide array of Cel-
lular Automata (CA) implementations. CA methods are 
particularly popular in architectural contexts [13] due to 
their inherent efficiency and rapid visualization. In CA, a 



given 2D or 3D space is discretized into a uniform lattice of 
non-overlapping cells, typically forming a square grid, but 
can also be based on any tileable shape that forms a consis-
tent neighbourhood pattern. A global clock periodically 
triggers a simultaneous update of all entities, where the next 
state of each cell is determined the by the state of all cells in 
its neighbourhood. When taken to an extreme, microscopic 
algorithms could also opt to simulate the individual joints 
of every entity’s anatomy (e.g. legs on a human, pedals on a 
bike, etc.) in order to generate the mechanically accurate 
locomotion towards a known target location [14]. 

More recent efforts have evolved from an observation that 
humans are anticipatory in their motion, able to predict 
when and where a collision is likely to occur, and enacting 
avoidance manoeuvres well in advance of such an event. 
This behaviour was extensively studied and analyzed to 
produce predictive models [15] that avoid collision in a 
manner that closely mimics empirical data. Real-time im-
plementations in this category include the Reciprocal Ve-
locity Obstacles (RVO) [16], and a vision-based approach 
that renders a depth map of the scene from each entity’s 
perspective to evaluate the appropriate avoidance manoeu-
vres [17]. 

3. METHOD 
We propose a personal area-based microscopic method that 
at dense enough scenarios produces physical interactions, 
pressure propagation waves, and compression of personal 
space due to the crowd’s collective attraction to an area of 
interest, where it behaves as a compressible fluid, even 
when the crowd is stationary. We start with an overview of 
the processing pipeline followed by a breakdown of the 
collision penalty force and its parameterization. 

3.1. Overview 
To simulate local pedestrian interactions, we first compute 
a combined personal space violation map, from which we 
are able to compute reactive penalty forces. The way each 
entity contributes to the personal space can be modified and 
parameterized visually through weight maps. Finally, the 
new location for each entity is computed by integrating the 
net acceleration force iteratively over several frames. 

3.2. Personal Space 
Each entity is represented by a particle in the 2D plane sur-
rounded by a contiguous area of personal space (PS) foot-
print. Based on the experiments done in [15], the personal 
space is about ~0.8m evenly around the center of the entity. 
In addition, as the entity gains velocity, there is a further 
elongation of the personal space in the direction of travel 
that is directly proportional to the speed. That is, humans 
typically expect an increasingly empty area ahead of them 
as they gain speed. 

As entities get within proximity of each other, we assume 
that the personal space becomes shared equidistantly be-
tween them. The closer those entities are to one another, the 
more they equally violate the other’s personal space. We 

also assume, as experiments have shown in [15], that 
there’s a short delay to human response, requiring a brief 
time (~150-350ms) to react to their surroundings and enact 
their collision avoidance manoeuvres. From this view, we 
propose an area-based penalty force that reacts to the PS 
violation in an iterative manner, attempting to restore the 
preferred PS area over several frames.  

For any point in a given entity’s PS to be considered unvio-
lated, it has to be closer to that entity than any other entity. 
The concept of sharing a space equidistantly as such evokes 
the tessellations produced by the Voronoi Diagram. In fact, 
we start by subjecting our entities and their personal space 
to an analysis similar to the one found in the Centroidal 
Voronoi Tessellation (CVT) relaxation algorithm [18]. We 
overlay the combined entity personal spaces onto a shared 
map, called the personal space map (PSM) that produces a 
tessellation that clearly aggregates and outlines all PS viola-
tions. 

Given the PSM, each entity can independently compute the 
current unviolated area’s centroid (i.e. its new geometric 
center). In CVT relaxation, the particle is simply moved to 
the new centroid, whereas in this calculation we treat the 
vector from the center of the original footprint to this new 
centroid as the basis for the penalty force calculation. 

The force is illustrated in Figure 3. Typically, there’s a pri-
mary directional force that moves the entity towards its 
destination, and it’s typically given by the global pathing 
scheme. The assumption is that the entity would reach its 
goal if it follows that vector, given that there are no obsta-
cles in its path. The penalty force is added to the global 
pathing force, resulting in the reactive behaviour of our 
crowd. The magnitudes of those forces and their stochastic 
variations are adjusted to create a smooth transition to the 
entity’s comfort speed, cs. On average, a comfort speed for 
walking is 1.4±0.24m/s [15], but can be further calibrated 
as described in the next sections.  

Due to the iterative nature of the algorithm, we end up with 
a slight transfer of energy, causing the gradual compression 
of personal space around areas of congestion for moving 
crowds and areas of interest for stationary ones. This is a 
welcomed effect as demonstrated in the results of Section 5. 

 
Figure 3. The net force (f) experienced by an entity is a linear 

combination of the global pathing force (g), and the penalty force 
(p) which falls along the direction of the new centroid. 

3.3. Particle Parameterization 
So far, we’ve been treating the personal space as a uni-
formly weighted homogenous area. However, we can fur-
ther modify the local dynamics by changing the footprint’s 
geometry or using a map to influence its weight. The con-



cept is briefly illustrated in Figure 4. The personal space 
footprint can be artificially varied over time or in response 
to global events (e.g. a fire alarm evacuation) or in prox-
imity to points of interest (e.g. slowing down when window 
shopping or near interesting booths at a busy exhibit hall). 
The footprint shape can also change to reflect the entity 
type (e.g. adult, child, stroller, etc.).  

The footprint can also accept a weight map which, through 
simple convolution, varies the impact of the PS infringe-
ment. For instance, placing a slightly heavier weight on the 
right side of the footprint to indicate a preference for taking 
the “right lane” when encountering oncoming traffic. 

These are all very intuitive and graphical parameterizations 
that are artist/designer-friendly, without requiring deep 
technical knowledge of the implementation or the code in-
volved. This makes it suitable for manipulation under art 
direction in a studio setting (e.g. film, gaming) and for edu-
cational scenarios that don’t conform to ideal conditions, 
such as having “difficult” or aggressive crowd members, or 
culling the footprint of a distracted pedestrian (e.g. on their 
cell phone) to simulate the increased likelihood of such an 
entity’s repeated collision and possible injury.  

 
Figure 4. Variations of PS footprints via shape and weight maps.  

Furthermore, a simple web of 1D springs can be attached 
between entities that should remain together, such as a fam-
ily or a row of friends. This allows each entity to still inter-
act with and be affected by its environment independently, 
yet adds a delayed constraint (the spring) that eventually 
maintains the group’s cohesion whenever possible. Those 
springs can have strain limits at which point the spring is 
broken, simulating a member of the group getting lost or 
stuck amidst a dense crowd away from its group. 

3.4.  Comfort Speed 
We employ the notion of the fundamental diagram [19], 
where pedestrian speeds, on average, vary inversely to their 
local density. Empirical data has shown that the fundamen-
tal diagram differs depending on the context of the crowd 
(e.g. indoors mall vs. crosswalk) and also across cultures. 
We use it to determine the comfort speed for each individ-
ual entity dynamically throughout the simulation. The den-
sity can be computed in a uniform grid, or as we will cover 
in the implementation section, utilize the personal space 
area to directly estimate the local density. 

4. IMPLEMENTATION 
The PSM presented in Section 3.2 can be treated as a trun-
cated Voronoi diagram, whose cells are bounded by a cer-
tain distance from their sites. 

To achieve the high performance desired in interactive ap-
plications, we take a cue from the GPU-accelerated compu-
tation of Voronoi diagrams in [20] and develop a similar 
pipeline here.  

Textured 3D cones are used to represent the entities and 
their personal space, with the tip of the cone representing 
the footprint center, and the base representing the outer 
edges of the personal space. In effect, the height along the 
surface of the cone encodes the distance to the center of the 
entity. When rendered from an orthographic top view (free 
of any perspective distortion) facing the tips, two cones will 
overlap at precisely the points that are equidistant to both 
entities. Figure 5 visualizes this calculation. 

By encoding the entities as geometric primitives and using 
the GPU’s depth buffer to quickly obtain the PSM tessella-
tion as discrete pixels, we are left with a shared data struc-
ture that allows each entity to compute its relative centroid 
and resulting penalty forces in a data-parallel fashion. The 
entities do not need to conduct a costly nearest neighbor 
search, as they simply consume and interact with the set of 
pixels representing their personal space in the PSM.  

    
Figure 5. Side view of 3D Cones (left); PSM allows each entity to 
compute forces in a highly localized data-parallel fashion (right). 

The mass of the individuals can be modeled by adjusting 
the height of the cones. The heavier the individual is (less 
likely to be affected by force), the closer the cone should be 
to the camera. Essentially, the lighter individuals would 
have to exert more force in order to make up for their in-
creased distance from the camera and infringe on the heav-
ier individual’s space.   

In order to differentiate between the rendered cones, they’re 
colored using a reversible hash map that is a function of the 
unique entity IDs. For our purposes, we reserve the first 
dozen colors in the 24-bit RGB space for obstacles and de-
bugging purposes, and utilize the rest to uniquely color 
code each entity. The reverse lookup (which is also a con-
stant cost function) enables any entity to directly identify 
the ID of another entity infringing on its pixel space. 

Hence we can theoretically simulate more than 16 million 
entities on a 24-bit RGB rendering surface, and potentially 
billions on higher bit-depth surfaces. Though, practically 
speaking, 16 million entities would end up using a single 
pixel each on a 4k×4k PSM map, as a best case-scenario. 
More on such scalability issues is discussed in Section 4.1.  



To compute the true center of PS footprints that have an 
influence map, vary by time, or are proportional to the en-
tity’s speed (as discussed in the Section 3.3), we first cali-
brate the shape for bias and then adjust the cone tip and 
texture accordingly. Without this step, an asymmetrical PS 
area that, for instance, elongates with speed will experience 
an ever increasing force in the direction of travel. Instead 
the collision-free bias should be taken into account in order 
to detect true violations of the PS footprint. 

There are two ways to compute the centroid from the PSM:  

a) Per-pixel aggregation - if there is overcrowding result-
ing in significant PS overlap, and then it is more eco-
nomical to only count the visible pixels and aggregate 
the results using the reverse hash lookup. 

b) Per-entity aggregation - in sparser scenarios, it’s more 
efficient to skip the PSM’s empty pixels and simply 
count the valid pixels in the vicinity of each entity.  

A simple threshold we used in our implementation checks: 
if (|entities|×πr2) > (1.2×PSM area) perform (a); else per-
form (b), where r is the footprint radius. We take each PSM 
pixel to represent 10×10cm, so our PS radii range from 6 to 
10 pixels, as sizes vary in a crowd.  

4.1. Scalability 
GPUs are highly efficient when it comes to massively data-
parallel processing, but they also have built-in memory 
limitations on texture sizes, and by extension, the size of the 
PSM maps we can compute for a given scene. A possible 
route is to use a courser grid to represent the scene, at the 
cost of simulation fidelity. The more reasonable approach 
in this instance is tiling. Regardless of the shape and com-
plexity of the simulation plane, it can be divided into tiles. 
A straightforward approach that minimizes communication 
across tiles is to have them overlap their computation space 
by an amount equal to the average entity PS radius. Similar 
to how we skip empty pixels in sparse crowds, we extend 
the concept by skipping entire tiles if they’re empty, and 
only processing the occupied ones. 

These tiles can be dispatched for simultaneous processing 
across multiple GPUs if available. Furthermore, the recent 
development of low-overhead graphics APIs like Khronos 
Vulkan and Microsoft DirectX12 encouraging the multi-
threaded dispatching of render-calls [21] supports the scal-
ability potential of our presented method. 

4.2. Density Estimation 
To compute the per-entity comfort speed discussed in Sec-
tion 3.4, we need to obtain an estimation of the local crowd 
density near each entity. We leverage the existing PSM to 
estimate the value di (entities/m2) as the reciprocal of its 
visible (unviolated) PS area. 

Once known, we render another PSM pass, but this time 
color every entity i using the estimated di, where brighter 
values correspond to higher densities. We then smooth the 
discontinuities using a Gaussian blur filter; again a very 

standard and parallel-friendly utilization of the graphics 
pipeline. The resulting density field, seen in Figure 6, is 
sampled for the comfort speed calculation in the following 
time step.  

It might be argued that better density estimation methods 
exist, such as those found in physics simulations using Soft 
Particle Hydrodynamics (SPH) that rely on cubic kernels to 
accurately converge to a true density continuum [22]. How-
ever, we opted for the simpler Gaussian kernel across our 
PSM with a radius of half a footprint’s radius in effective 
pixels. Not only is the result sufficient for our purposes (an 
estimation of density), but it also helps that it isn’t too pre-
cise since the fundamental diagram is only an aggregate of 
human behaviour that hides individual variations and hu-
man inaccuracies that would naturally occur from an entity 
subconsciously assessing its surrounding. Furthermore, the 
Gaussian filter is linearly separable meaning we can blur all 
the rows first using a 1D Gaussian, then blur the columns to 
obtain the final 2D Gaussian blur. This optimizes the com-
putation of the convolution from a quadratic O(𝑛𝑚2) com-
putation to a more linear O(𝑛𝑚), where 𝑛 is the number of 
pixels in space, and 𝑚 is the radius of the filtering kernel. 

 
Figure 6. Local density is estimated per entity (left) then a global 

low-pass filter (right) is applied to obtain a smooth field.  

5. SIMULATION RESULTS 

5.1. Setup 
For each scenario, we initialize entity positions and orienta-
tions, and randomize a few parameters such as weight, size, 
and a comfortable speed base. For demonstration and test-
ing purposes we use simple global pathing schemes such as 
A*, floor maps, or global vectors to target positions [13]. 
The simulation time step used is 50ms, as we did not notice 
an improvement in quality by going with a finer time delta. 

Videos and accompanying source code can be obtained 
from http://vs3.sce.carleton.ca/wordpress/ . 

5.2. Results 
Figures 7-11 illustrate the results, including a variety of 
emergent phenomenon reproduced by our algorithm. Lane 
formation in bidirectional flow is an innate pedestrian opti-
mization strategy that is observed in narrow hallways to 
minimize resistance to their otherwise opposing directions 
of motion. Figure 7 illustrates this scenario, while Figure 8 
displays the performance achievable with two different test 

http://vs3.sce.carleton.ca/wordpress/


systems. The first is a mobile-class Intel Core i5-3337U 
2.7GHz processor with integrated graphics (that is, the CPU 
is also responsible for all graphical processing), and the 
second is a desktop AMD A10-7850 3.7 GHz CPU with a 
dedicated Nvidia GTX970 graphics card. We consider 
simulations running at 12fps to be reasonably interactive, 
8fps a bare minimum experience, and 20fps essentially real-
time (given the 50ms simulation time step).  

 
Figure 7. Natural lane formation during a bidirectional flow simu-

lation of 1000 entities on a 600×800 PSM grid (blue entities 
headed south; red headed north). 

What is important to note from Figure 2 is that this is not a 
static distribution or placement algorithm, but rather the 
emergent behaviour of a fully dynamic local interaction-
based force for stationary crowds and pedestrians in mo-
tion. In sparse scenarios, the penalty force acts like a micro-
scopic method whose goal is to avoid collision with nearby 
entities, while in denser cases where collision and physical 
contact are likely, it starts displaying macroscopic qualities 
that collectively treat the crowd as a singular fluidic object, 
exhibiting waves and energy propagation among its indi-
viduals.  

At less than 0.5m2 of personal space per entity, the crowd 
reaches a critical density [23], where entities are subject to 
enough pressure to cause significant discomfort, if not out-
right injury or worse. This is a common concern in large-
event contingency planning, and simulation can help iden-
tify pockets of potentially unsafe accumulation and over-
crowding of attendees [24]. In Figure 9, a crowd of 1000 
entities in a confined space is reacting to the fact that they 
are over-crowded. Requiring neither a cognitive model nor 
a global pathing scheme, the penalty force is sufficiently 
able to naturally and gradually restore the compressed 
crowd to a more comfortable distribution, filling the room if 
necessary until every entity reaches a suitable state. This 
can be seen in real life when crowds are held behind barri-
ers and a gate opens allowing the otherwise compressed 
crowd to diffuse through. 

Those on the outer edge of the crowd have less density to 
deal with, so naturally, as we would expect in reality, they 
have the greatest freedom to accelerate to higher speeds 
compared to those that are relatively slowed or still trapped 
near the middle. We utilize this effect to simulate the emer-
gent behaviour at a marathon race start. As visualized in 
Figure 10, the wave of delayed acceleration is the result of 
those at the front of the race having the advantage of lower 
density ahead of them, allowing them to sprint ahead sooner 

while those behind are stuck to less competitive speeds, 
until the delayed wave catches up to them eventually and 
the speeds equalize. Unlike the compressed room in Figure 
9, this scenario has a global goal vector along the marathon 
track applied evenly to all contestants; but the penalty force 
is able to reproduce the observed acceleration wave effect. 

 
Figure 8. Simulation performance of the bidirectional scenario 

illustrated in Figure 7, varied by number of pedestrians. 
 

 
Figure 9. Penalty forces are sufficient to cause an overcrowded 
room (left) to diffuse to a more comfortable equilibrium (right), 

where any further motion would not improve the situation. 

 

 

Figure 10. The gradual release of density-dependent velocity. 
Left: snapshots of marathon start; Right: our simulated result. 
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The compression of personal space in static crowds is rarely 
seen in political protests or general gatherings of people 
where there isn’t a focal point of interest or a barrier to mo-
tion in a desired direction. In such cases, a more even dis-
tribution emerges, such as the one in Figure 9.  

Huddled crowds, as seen in Figures 2 and 11, have a ten-
dency to fill the space semi-regularly, equalizing the num-
ber of neighbours surrounding each entity. They also ex-
hibit a petal-like pattern, with entities preferring to stand 
between the shoulders of those ahead, instead of directly 
behind them.  

 
Figure 11. At equilibrium, our method reproduces the emergent 

banding and semi-regular distribution among a static crowd. 

5.3. A Discrete-Event Approach 
The Lagrangian evaluation of crowd dynamics is well-
established for discrete-time simulation. But in cases where 
there is a clear discretization of states and events, it can be 
worthwhile to pursue a discrete-event implementation of 
those state variables and their transitions. The key idea here 
is to perform the state update only when necessary. That is, 
instead of calculating the motion of the all the entities syn-
chronously at regular time intervals, each entity would in-
stead asynchronously evaluate its own state (e.g. cognitive 
goals) and the local environment to compute a state transi-
tion in an event-driven fashion. 

Cellular Automata (CA) and similar Eulerian fixed grid 
approaches are notably popular in discrete-event crowd 
simulation [25]. But in order to accommodate freeform and 
non-axis-aligned structures, we were motivated from the 
start to instead consider a Lagrangian approach to comput-
ing the relevant physical quantities -i.e. the position, orien-
tation, and vision assessment being computed at the vector 
location of each entity as it moves continuously through 
space. Even so, we do borrow the fundamental idea from 
discrete-event Eulerian methods, in that an entity should not 
update its state unless its local neighbourhood has experi-
enced a significant change that triggered an event. This 
spares a lot of needless computation for entities that have 
reached equilibrium, and is particularly relevant for this 
paper where we study stationary crowds.  

Our algorithm was designed with this optimization in mind. 
Specifically, the globally accessible PSM is a convenient 
way for each entity to independently interact with its 
neighbourhood; notifying and being notified about changes 
and relevant events without requiring direct communication 

with nearby entities. Implementation-wise, each entity is 
“registered” to listen to the changes in its surrounding pix-
els (not nearest neighbours). Those pixels normally exist in 
close proximity and exhibit favourable memory access pat-
terns. It’s noteworthy that, with careful modelling, an Eule-
rian grid can be emulated in a Lagrangian engine, maintain-
ing compatibility with existing Eulerian models and tools.  

6. LIMITATIONS AND OPPORTUNITIES 
While this lightweight force is capable of producing a vari-
ety of visually convincing emergent crowd behavior on its 
own, it is equally suitable for integration with existing par-
ticle-based methods if desired. For more serious applica-
tions that rely on data-driven calibration and rigorous accu-
racy requirements, the idea of encoding local interactions as 
geometric primitives requires further study. A worthy pur-
suit is the geometric encoding of velocity-space collision 
avoidance schemes, such as RVO optimization, which al-
low for calibration and the accurate reproduction of kinetic 
trajectories of microscopic pedestrian interactions. The 
challenge in describing the RVO scheme geometrically is in 
its empirically-motivated assumption that collision avoid-
ance is a shared effort between nearby entities, thus requir-
ing that entities know about and share information with 
their nearest neighbours, something we’ve been actively 
avoiding in our performance-minded GPU implementation.  

The event-driven approach described earlier in Section 5.3 
can be further applied on a per-parameter basis, assigning 
certain events to trigger specific state variable updates. As 
the complexity of such event-driven models increases, fol-
lowing a standard modeling formalism such as DEVS (Dis-
crete Event System Specification) can aid in the model’s 
design and management of its complexity [26]. Such for-
malisms typically provide highly optimized universal simu-
lation engines, allowing the modeller to focus on abstract-
ing the behaviour being studied, without concern for im-
plementation details. Pursuing such an approach would pre-
sent several advantages compared to plain CA or homebrew 
event-driven solutions, namely: composability with the ex-
isting library of DEVS models and architecture systems 
(e.g. [27]); interfacing with modeling standards such as 
HLA; and the ability to submit the model to formal verifica-
tion, validation, and static analysis techniques [28] (e.g. 
deadlock detection, unreachable states, etc.).  

We began the exploration of this centroidal area force in the 
context of crowd simulation due to the natural limits of hu-
man acceleration and velocity. And while it might be tempt-
ing to directly use this force for physics-based simulation of 
fluids, soft-bodies (such as clay), and granular solids (such 
as sand), the unpredictable, often chaotic, and extreme ac-
celerations experienced within those bodies require a more 
careful consideration of the utility of this force. It would be 
difficult to entirely dismiss the nearest neighbor search if 
our “implicit collision” response force was to be used for 
physics-based simulation. However, in its current form, the 
effort presented in this paper certainly opens the possibility 



for less critical applications such as film, gaming, and im-
mersive virtual reality (VR) experiences. 

7. CONCLUSION 
This paper introduces a method to compute a given crowd’s 
local dynamics in an interactive application context, and it 
demonstrated several emergent patterns of dense crowds in 
static or near-static conditions. Our main contribution is an 
area-based penalty force that gradually aggregates the in-
fringement of personal space in order to assess the appro-
priate response from each entity. We presented an imple-
mentation that encodes the proximity information into 
geometric shapes and textural maps, turns the neighbour-
hood computation into a matter of simply rendering those 
shapes through a typical 3D graphics pipeline, and simu-
lates thousands of entities at interactive frame rates.  
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